

August 11, 2016

Advanced Solid Sorbents and Process Designs for Post-Combustion CO₂ Capture (DE-FE0007707)

RTI International

Atish Kataria, Paul Mobley, Thomas Nelson, Mustapha Soukri, Jak Tanthana

Pennsylvania State University

Chunshan Song, Dongxiang Wang, Xiaoxing Wang

RTI International is a trade name of Research Triangle Institute.

Copyright © 2016 RTI. All rights reserved.

Project Overview

Objective

Address the technical hurdles to developing a solid sorbent-based CO_2 capture process by transitioning a promising sorbent chemistry to a low-cost sorbent suitable for use in a fluidized-bed process

This project combined previous technology development efforts: RTI (process) and PSU (sorbent)

- Project management
- Process design
- Fluidized-bed sorbent

- PSU's EMS Energy Inst.
- PEI and sorbent improvement

Period of Performance:

• 10/1/2011 to 12/31/2015

- Masdar New Ventures
- Masdar Institute
- TEA of NGCC application

RTI International

Solid Sorbent CO₂ Capture

 $CO_2 + 2RNH_2 \rightleftharpoons NH_4^+ + R_2NCOO^-$

 $CO_2 + 2R_2NH \rightleftharpoons R_2NH_2^+ + R_2NCOO^-$

 $CO_2 + H_2O + R_3N \rightleftharpoons R_2NH^+ + HCO_3^-$

Primary:

Tertiary:

Secondary:

Technology Features

- Sorbent: supported polyethyleneimine
- Process: fluidized, moving-bed

Advantages

- Potential for reduced energy loads and lower capital and operating costs
- High CO₂ loading capacity; higher utilization of CO₂ capture sites
- Relatively low heat of absorption; no heat of vaporization penalty
- Avoidance of evaporative emissions
- Superior reactor design for optimized and efficient CO₂ capture performance

Challenges

- Heat management / temperature control
- Solids handling / solids circulation control
- Physically strong / attrition-resistant
- Stability of sorbent performance

Technical Approach & Scope

Previous Work	RTI's Project		Future Development				
< 2011	2011-15		2016 - 18	2018-22	> 2022		
Proof-of-Concept / Feasibility			Pilot 0.5 - 5 MW (eq)	Demo ~ 50 MW	Commercial		
Laboratory Validation (ooratory Validation (2011 – 2013)		Prototype Testing (2015)				
 Economic analysis Milestone: Favorable technology fer Sorbent development Milestone: Successful scale-up of fl Process development Milestone: Working multi-physics, Milestone: Fabrication-ready design single-stage contactor 	easibility study uidized-bed sorbent CFD model of FMBR n and schedule for	 Prototype Testing Milestone: Operational prototype capable of 90% CO₂ capture Milestone: Completion of extensive parametric and long-term testing campaigns Updated Economics Milestone: Favorable technical, economic, environmental study (i.e. meets DOE targets) 					
	Relevant Environm	entValidation (201	3 - 2014)				

Relevant Environment Validation (2013 – 2014

Process development

- Milestone: Fully operational bench-scale FMBR unit capable of absorption / desorption operation
- Milestone: Fabrication-ready design and schedule for high-fidelity, bench-scale FMBR prototype

Sorbent development

• Milestone: Successful scale-up of sorbent material with confirmation of maintained properties and performance

Test Equipment – PBR and vFBR

- Verify (visually) the fluidizability of PEIsupported CO₂ capture sorbents
- Operate with realistic process conditions
- Measure $\triangle P$ and temperature gradients
- Test optimal fluidization conditions

"visual" Fluidized-bed Reactor

Packed-bed Reactor

- Fully-automated operation and data analysis; multi-cycle absorption-regeneration
- Rapid sorbent screening experiments
- Measure dynamic CO₂ loading & rate
- Test long-term effect of contaminants

Sorbent Development & Scale-up

Objective

Improve the thermal and performance stability and production cost of PEI-based sorbents while transitioning fixed-bed MBS materials into a fluidizable form.

PEI-impregnated Silica ("Gen1")

- Stability improvements through addition of moisture and PEI / support modifications.
- Suitable low-cost, commercial supports identified (1000x cost reduction).
- Converted sorbent to a fluidizable form.
- Optimized Gen1 sorbent through: solvent selection; drying procedure; PEI loading %; regeneration method; support selection; etc.

Co-Precip Amine/Silica ("Gen2")

- Extremely stable sorbent, high CO₂ loadings (10 14 wt%).
- Key benefits: stability in liquid water, high CO₂ loadings, tailoring potential, diverse applications
- Challenges: density, physical strength, cost
- Mixed results with most promise identified in the use of blended amines and templates

RTI International

Sorbent Scale-up

Initial Scale-up (150 kg)

- 30 wt% PEI on commercially-available silica
- Scaled-up sorbent matches performance and properties of lab sorbent

	Amount	PEI loading	CO ₂ Capacity	FBR test	PSD
Lab Sorbent	100+ g	30 %	8.5 wt%	Pass	75 – 250 um
Scaled-up Sorbent	150 kg	30 %	8.9 wt%	Pass	80 – 250 um

Sorbent Make-up Batch (100 kg) – following Oxidative Degradation

- Improved silica selection, optimized PEI loadings
- 6 months of bench-scale testing exhibited little to no degradation

Scale-up Batch (100 kg) – made for RTI's project with Norcem (cement application)

- Improved commercial preparation
- Sorbent exhibits improved CO₂ capture performance

RTI's Bench-scale Prototype System

Specifications

- Flue gas throughput: 300 and 900 SLPM
- Solids circulation rate: 75 to 450 kg/h
- Sorbent inventory: ~75 kg of sorbent
- Adsorber temperature range: 40 90°C
- Regenerator temperature range: 100 130°C
- Heat exchange fluids: CW in Adsorber; Steam in Regenerator
- Footprint / Height: 15' x 5' / 35' H
- Pneumatic conveying of sorbent (Regen \rightarrow Adsorber)
- Sorbent circulation rate controlled and monitored by measurement of the riser pressure drop

FG CO ₂ Compositon 15 vol%	H ₂ O	N ₂	
	3 vol%	Balance	

Operational improvements

- Optimized loop seal aeration to maximize solids circulation
- Eliminated static electricity build-up which caused agglomeration
- Added pneumatic vibrators to downcomers, improving circulation
- Modified gas entrance arrangement to primary cyclone and added secondary cyclone to improve sorbent recovery
- Added larger downcomers for additional circulation reliability
- Full system reconfiguration:
 - Original configuration: 4-stage Ads, 1-stage Regen
 - Reconfiguration to 2-stage Ads, 2-stage Regen

2.25

2

2

2.25

2.5

2.75

3

Calculated regenerator heat duty, MJ/kg-CO2

3.25

3.5

3.75

Δ

Bench-scale System – Baseline Testing

.

2.5

3

3.5

CO₂ Capture Efficiency

0

0

0.5

1

1.5

2

Calculated cooling duty, kWth

CO₂ Mass Balance 140 120 100 80 60 40 11:00 12:00 13:00 14:00 15:00 16:00 17:00

> Good correlation between calculated and experimentally measured heating and cooling duties (within +/- 10%)

Oxidative Degradation

Challenge

Scaled-up sorbent was observed to have a steady decline in the sorbent's CO_2 capacity over several hundred hours of testing. CO_2 sorption capacity was impacted while fluidizability and other key physical parameters remained unaffected.

Potential Degradation Pathways

- PEI-leaching
- Dry flue gas
- Dry stripping gas
- Exposure to oxygen
- Combination of the conditions listed above.
- A Design of Experiments (DoE) study was implemented and a half factorial test campaign for five parameters

	• Two most important factors: O_2 concentration (i.e. exposure to O_2) and
	the temperature at which O_2 exposure occurs
Conclusions	• 3rd factor (absence of H_2O in stripping gas), important but is reversible
	• Sorbent O_2 exposure at < 70°C is acceptable
	Sorbent cooler is recommended when conveying with air

Reactor Staging

- Reactor staging required to maximize performance; well-mixed single-stage reactors limit achievable rich and lean loadings
- *Adsorber*: equilibrium loading calcs and experimental observations suggest 2 stages are sufficient
- *Regenerator*: 2 stages, minimum required

Bench system reconfiguration

- Removed bottom two adsorber stages which do not participate in CO₂ capture but act as dead/inert volume
- 2-stage Adsorber, 2-stage Regenerator

RTI International

Bench-scale Prototype Testing

Highlights of prototype testing

- Cumulative testing: 1,000+ circulation hours;
 420+ CO₂ capture hours.
- The sorbent is capable of rapid removal of CO₂ from the simulated flue gas
- Sustained 90% capture of the CO₂ in simulated flue gas stream is easily achieved
- Collected a wealth of performance data, identified how system performance varies due to process variables, and proved the reliable nature of bench-scale testing

Bench-scale Prototype Testing

Highlights of prototype testing

Heat Management

- Complicated by large heat losses to environment
- Able to demonstrate superior CO₂ capture performance with heat management

Operating Parameters

- Able to quantify system response and performance due to changing parameters
- Able to identify optimal conditions, balancing performance with other economic factors:
 - 70°C Absorber temperature
 - 120°C Regen temperature
 - > 1 ft/s FG velocity
 - Higher S/G ratios better, but energy and footprint impacts taken into account
 - Performance at a range of FG CO₂ concentrations was quantified

Sorbent Stability

- CO₂ capacity stable between 8.5 9.0 wt% CO₂ loading after 6 months of testing
- Thermal and oxidative degradation avoided

Long-term Performance Testing

Other Observations / Lessons

- Attrition-resistance of sorbent is evident from similar PSD for used sorbent, fines collection rate and no sorbent make-up
- Sorbent maintains excellent hydrodynamic / fluidization properties
- Good approach-to-equilibrium achieved in all reactor stages
- Quality data collected allowing for revision
 of economic analysis assumptions

Long-term testing

- 100+ hr continuous testing, maintaining the performance target of 90% CO₂ capture while varying sorbent circulation rate
- Sorbent maintained CO₂ working capacity between 4 and 7 wt.%
- Desired set points for all process conditions and reactor settings were tightly controlled
- Robust nature of system proven

Updated Economic Analysis

Breakdown of Main Contributors to Cost of CO₂ Captured

Preliminary Analysis

Summary

- Basis: DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants – updated with lab and bench-scale test data
- Total cost of CO₂ captured ~ 45.0 \$/T-CO₂
- 43.3 \$/T-CO₂ achievable through use of unproven spent sorbent scrubbing strategy
- Still represents > 25% reduction in cost of CO₂ capture, significant energy and capital savings compared to SOTA aqueous amine solvents

Main Factors impacting TEA

- Sorbent Cost
- CO₂ content in Regenerator
- Sorbent working capacity
- Regeneration temperature

Pathway to Cost Reductions

- Adsorber/Regenerator Design
- Heat recovery and integration
- Sorbent stability and cost

Updated Economic Analysis

Breakdown of Main Contributors to Cost of CO₂ Captured

Summary

- Basis: DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants – updated with lab and bench-scale test data
- Total cost of CO₂ captured ~ 45.0 \$/T-CO₂
- 43.3 \$/T-CO₂ achievable through use of unproven spent sorbent scrubbing strategy
- Still represents > 25% reduction in cost of CO₂ capture, significant energy and capital savings compared to SOTA aqueous amine solvents

Main Factors impacting TEA

- Sorbent Cost
- CO₂ content in Regenerator
- Sorbent working capacity
- Regeneration temperature

Pathway to Cost Reductions

- Adsorber/Regenerator Design
- Heat recovery and integration
- Sorbent stability and cost

Technology Roadmap

RTI-Norcem – Cement Plant Application

Objective

Demonstrate the technical and economic feasibility of RTI's advanced, solid sorbent CO₂ capture process in an operating cement plant

Period of Performance:

• 5/1/2013 to 12/31/2016

GASSNOVA

Two Phases

Phase I – Feasibility Review – Complete

- Sorbent exposure to actual cement plant flue gas
- Economic evaluation
- Commercial design for cement application

Phase II – Demonstration – In Progress

- Design, build, and test a prototype of RTI's solid sorbent CO₂ capture technology
- Evaluate CO₂ capture performance
- Update economics with pilot test data

Progress and Lessons Learned

- Evaluated sorbent performance with actual cement flue gas
- No critical failure in performance over 300+ cycles. Achieved desired capacities

Economics

- Economic indicators of 38 46
 €/t-CO₂ avoided show RTI's technology is economically competitive in CO₂ capture field
- RTI's technology is a good candidate for waste heat utilization

Pilot Design

- Design and engineering leveraged lessons learned on DOE-funded project
- Process Hazard Analysis
 - Install complete

Phase II – Prototype Testing at Norcem

RTI Prototype

- **Completed:** Design, Engineering, Construction, Shipment, Installation, Commissioning, and Training
- Baseline and Parametric testing currently underway at Norcem's cement plant
- Parametric and long-term performance testing planned **through Nov 2016**

Project Outcomes

Addressing Technology Challenges

- *Heat management*: Proved critical need for FMBR design through engineering analysis, lab-, and bench-scale testing
- Heat management technique in Bench system mimics commercial design
- Solids handling: improved sorbent working capacities, fluidizable material, and staged design reduce solids handling requirements
- Bench testing provided correlations to flow control, pressure balancing
- *Physical strength*: Bench testing proved excellent physical strength of fluidizable sorbent very little attrition losses
- Performance stability: Excellent stability exhibited in bench testing
- Sorbent now has thermal-, chemical, and leaching-stability

Bridge to Pilot Testing

- Bench testing, lab screening, and modeling collected critical process design data for pilot design and detailed TEAs
- Economics are attractive with pathway to meet DOE goalls
- Sorbent manufacturing has been optimized "Gen1" sorbent is viable path forward; Gen2 sorbents exhibit great potential
- Expanding potential market application through cement plant testing and NGCC evaluations
- Detailed economic assessments highlight areas for improvement:
 - Expanded data collection, novel heat integration, sorbent cost, sorbent working capacity, further staging studies

Technology Challenges

- Heat management / temperature control
- Solids handling / solids circulation control
- Physically strong / attrition-resistant
- Stability of sorbent performance

Funding provided by:

The U.S. DOE/National Energy Technology Laboratory

- Bruce Lani
- Lynn Brickett
- John Litinski
- Masdar (Abu Dhabi Future Energy Company)

